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1. Introduction

The AdS/CFT correspondence states the equivalence of string theory on AdS5 × S5 to

the N = 4 supersymmetric Yang-Mills [2]. One consequence of this duality is that the

spectrum of string states must match with the spectrum of operator dimensions in gauge

theory. This statement has been tested initially only for supergravity multiplets and their

KK descendants. Since quantization of string theory on AdS5×S5 is not fully understood,

a more complete verification of the spectral matching has posed substantial difficulties.

A significant new step was made in [3, 4] based on the identification of a particular

sector of string states carrying a large angular momentum J with the ‘long’ gauge theory

operators. The authors of [4] have argued that the spectrum of the large-J string states

can be computed reliably in the semi-classical approximation.

On the gauge theory side the problem of determining the spectrum corresponds to

diagonalizing the dilatation operator. In planar perturbation theory, for small ’t Hooft

coupling λ = Ng2 ¿ 1 this problem has an elegant reformulation [5 – 9] in terms of di-

agonalizing an integrable spin chain. On the string theory side, the problem simplifies in

the opposite limit of λ À 1, where the string sigma-model becomes weakly coupled. It

has been argued in [10, 11] that the classical string sigma-model on the AdS5 × S5 is also

integrable. The appearance of integrability on both sides of the correspondence (albeit in

opposite limits) has triggered a lot of interest and offered a hope that the prediction of the

matching of the spectra can be tested and verified explicitly.

In the integrable spin chain description of gauge theory, the Yang-Mills composite

operators are assembled from specific building blocks which are associated with magnons

— the elementary excitations of the spin chain with one flipped spin. The Yang-Mills

description of the magnon corresponds to the operator

O ∼
∑

l

eipl (· · ·ZZZ I ZZZ · · · ) (1.1)

Here the ‘impurity’ I is inserted at a position l along the chain of Z fields (J of them).

In the simplest settings which correspond to the SU(2) sector of the N = 4 gauge theory,
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the Z field is given by a complex scalar field Φ1, and the impurity I is given by another

complex scalar Φ2.

Each magnon is characterized by its dispersion relation,

E − J =

√

1 +
λ

π2
sin2 p

2
(1.2)

In the limit of a long spin chain, J À ∞, the magnons are dilute. As a result, the scal-

ing dimensions of Yang-Mills operators can be computed by summing over the dispersion

relations (1.2) for each constituent magnon. Equation (1.2) is an exact BPS formula1 [12]

in the N = 4 gauge theory. It can be derived from the supersymmetry algebra [12], or by

adopting the calculation in [13].

The AdS/CFT correspondence relates gauge invariant Yang-Mills operators to string

states. In the integrable spin chain description, these operators are assembled from

magnons. It is natural to ask if the magnon itself has a string description. In a recent

paper [1] Hofman and Maldacena have found this description.

Hofman and Maldacena [1] have considered a particular double-scaling N → ∞ limit

where

J → ∞ , λ = fixed , p = fixed , E − J = fixed (1.3)

In this limit both, the spin chain of the N = 4 gauge theory, and the classical string

on the AdS5 × S5, become infinitely long. In this sector the problem of determining

the spectra of both theories becomes more tractable. The spectrum of the infinite spin

chain can be constructed in terms of asymptotic states. These asymptotic states are made

out of elementary excitations of the spin chain – the magnons. They carry a conserved

momentum p and have the energy ε(p) = E−J−1 given by eq. (1.2). On the string theory

side, the authors of ref. [1] have found a classical solution which precisely corresponds to

an elementary magnon of the gauge theory spin chain. The lightcone energy E − J of this

classical string coincides with the dispersion relation of the magnon (1.2).

In the subsequent work [14] N. Dorey et al have constructed classical string solutions

which correspond to bound states of magnons of the spin chain. There is an exact dispersion

relation [14] which holds for the spin chain magnons of charge J2 and for the semi-classical

string with angular momenta J1 and J2:

E − J1 =

√

J2
2 +

λ

π2
sin2 p

2
(1.4)

These results of [1, 14] imply that in the infinite spin chain limit, the N = 4 SYM spectrum

represented by elementary and composite magnon asymptotic sates matches precisely with

the states in semi-classical string theory on AdS5 × S5. Two very recent papers [15, 16]

analyze the effects of finite J and of the quantum corrections to the semi-classical string

magnons.

1More precisely, the dispersion relation is of the form E − J =
p

1 + f(λ) sin2 p/2. Supersymmetry

alone cannot determine the function f(λ). However, all known perturbative (up to 3-loops) and the strong-

coupling results are consistent with f(λ) = λ/π2.
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The main motivation of this paper is to study what happens with this classical-

string/magnon correspondence in theories with less supersymmetry. We will consider an

N = 1 supersymmetric gauge theory obtained by a marginal β-deformation of the N = 4

SYM. The AdS/CFT duality extends to the β-deformed theories where it relates the N = 1

β-SYM and the supergravity on the deformed AdS5 × S̃5 background. The gravity dual

was found by Lunin and Maldacena in ref. [17]. On the other hand, for real β, the β-SYM

theory has an integrable spin chain description [18 – 20, 33] and also the Lax pair exists [22].

Hence, it is interesting to find out if the classical-string/magnon correspondence holds in

the β-deformed case.

In [20], it was argued that the two-loop SU(2) spin chain Hamiltonian representing the

two-loop dilation operator of the real-β-deformed SYM can be obtained from the 2-loop

spin chain Hamiltonian of the undeformed N = 4 theory by applying a position-dependent

unitary operator U . The effect of this unitary operator is to twist the boundary conditions

of the original spin chain. As a result, the asymptotic Bethe ansatz equations for the

deformed theory can be obtained from the Bethe ansatz equations of the undeformed

theory simply by performing the following substitution

p −→ p − 2πβ (1.5)

on the left-hand side of the Bethe ansatz equations. If this construction of the spin chain

Hamiltonian of the deformed theory can be extended to higher loops then one can calculate

the anomalous dimensions of all single trace operators in the SU(2) sector of the deformed

theory by taking the conjectured all-loop Bethe equations for the undeformed theory [7, 8]

and modifying it as stated in (1.5). Hence for real-valued deformation parameter β ∈ IR, we

expect that the dispersion relation (1.4) is modified only through a shift in the momentum p:

E − J1 =

√

J2
2 +

λ

π2
sin2

(p

2
− πβ

)

(1.6)

This modification can also be traced back to a perturbative calculation of anomalous

dimensions of operators assembled from (1.1) in the β-deformed theory.

Since in the Hofman-Maldacena limit the magnon momentum p is kept fixed and that

for the LM supergravity solution to hold, β must be small, β ¿ 1/R ¿ 1, it follows that

the dispersion relations for the magnon and multi-magnon states of the β-deformed theory

are the same as those in the undeformed case (1.4).

If the Hofman-Maldacena construction does extend to the β-deformed AdS/CFT cor-

respondence, the magnon of the spin chain must correspond to (an open part of) a funda-

mental string moving on the deformed sphere S̃5. Since the background itself depends on

the deformation parameter γ̂, one would expect that the relevant classical string solution

will carry a lightcone energy E − J that depends nontrivially on the deformation. We

will find that this is indeed the case for the β-deformed solution constructed in this paper.

From this one might expect that the dispersion relation for magnons of the β-deformed

theory would explicitly depend on the deformation parameter γ̂ = β
√

λ. If this was true,

this would be in contradiction with the integrable description of the β-deformed theory.
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It will turn out that the entire γ̂-dependence in the dispersion relation for the string is

absorbed into the second angular momentum J2. In the regime where the Lunin-Maldacena

supergravity background is reliable (β ¿ 1, γ̂-fixed) our solution will precisely reproduce

the dispersion relation (1.4). The β-deformed classical open string solution corresponds to

a magnon of charge J2 in the spin chain description of the β-deformed gauge theory. This

magnon is schematically2 of the form (1.1) where Z = Φ1 and the impurity is composite

I ∼ (Φ2)
J2 .

In this paper we will consider only deformations with β real. In the undeformed N = 4

theory the formula (1.4) is the dispersion relation for states in a short representation.

Because it is BPS protected in the N = 4 theory, it is valid for any values of λ. We will

re-derive the same formula in the N = 1 theory. In this case we cannot appeal to the

BPS properties based on the extended supersymmetry algebra. One particularly pleasing

feature of our analysis is that we will be able to derive the full square-root expression

in (1.4) from classical string theory. Based on expectations from the integrable spin chain

analysis it is likely that the dispersion relation (1.4) is exact and is valid for all values of λ

in the β-deformed N = 1 theory.

Recent papers which study perturbative and non-perturbative effects in β-deformed

gauge theories include [23 – 32].

2. Classical strings in the β-deformed background

The supergravity background dual to β-deformed gauge theory was constructed by Lunin

and Maldacena (LM) [17] by applying a solution generating SL(3, R) transformation to

the AdS5 × S5 background, or equivalently an STsTS−1 transformation. The deformed

supergravity solution [17] contains the metric on AdS5 × S̃5

ds2
str = R2

[

ds2
AdS5

+
3

∑

i=1

(dµ2
i + Gµ2

i dφ2
i ) + γ̂2 Gµ2

1µ
2
2µ

2
3(

3
∑

i=1

dφi)
2

]

(2.1)

where S̃5 is a β-deformed five-sphere and
∑3

i=1 µ2
i = 1. The LM solution also involves the

dilaton-axion field τ as well as the RR and NS-NS form fields. In what follows we will

require only the expression for the metric (2.1) and the the NS-NS two-form field

BNS
2 = γ̂R2G (µ2

1µ
2
2dφ1dφ2 + µ2

2µ
2
3dφ2dφ3 + µ2

3µ
2
1dφ3dφ1) (2.2)

Here

G−1 = 1 + γ̂2(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3) , R4 := 4πNgst , γ̂ := R2β =

√
λβ . (2.3)

The coordinates (µi, φi) which parameterize the deformed 5-sphere S̃5 correspond pre-

cisely to the three complex scalars Φi of the β-deformed gauge theory. This correspondence

2More precisely, as explained in [14], the magnon bound-state corresponds to a particular state of the

spin chain where the wave-function is strongly peaked on configurations where all flipped spins (i.e. Φ2’s)

are nearly adjacent to each other.
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is dictated by the three U(1) isometries surviving from the SU(4)R symmetry of the N = 4

SYM,

µ1 eiφ1 = Φ1 = ϕ1 + iϕ2 , (2.4)

µ2 eiφ2 = Φ2 = ϕ3 + iϕ4 , (2.5)

µ3 eiφ3 = Φ3 = ϕ5 + iϕ6 , (2.6)

Here Φi denote complex scalars which are the lowest components of the three chiral super-

fields of the N = 1 supersymmetric β-deformed gauge theory and ϕ1, . . . , ϕ6 denote the

corresponding six real scalar fields. It will be convenient to parameterize µi coordinates

via

µ3 = sin θ sin α , µ1 = sin θ cos α , µ2 = cos θ (2.7)

so that
∑

i dµ2
i = dθ2 + sin2 θ dα2.

As mentioned earlier, the LM supergravity background is a reliable approximation to

string theory in the regime [17] where R À 1 and β ¿ 1.

Ultimately we are interested in closed bosonic strings moving on IR× S̃5. These closed

(folded) strings can be constructed from open strings in the same manner as in [1]. It is

an open string with the ends on the equator of the deformed sphere which corresponds to

a magnon building block of the gauge theory operators. From now on we concentrate on

such open strings.

γ̂ = 0: Hofman-Maldacena solution. First we briefly recall the classical string solution

in the undeformed N = 4 theory found by Hofman and Maldacena in [1]. The deformations

are switched off by setting γ̂ = 0 (which also implies G = 1 with BNS = 0) in eqs. (2.1)-(2.3)

above. This solution lives on the IR × S2 background, where the metric on S2 is

ds2 = dθ2 + sin2 θ dφ2 (2.8)

We are looking for a solution of equations of motion arising from the Polyakov action

in the conformal gauge. It corresponds to a classical open string moving on the infinite

worldsheet parameterized by coordinates t and x.

This solution θ(x, t), φ(x, t) we are after can be written in the form

θ(x, t) = θ(y) , φ(x, t) = t + g(y) , y := cx − dt (2.9)

where c and d are positive constants. Functions θ(y) and g(y) represent a wave localized

around y = 0 and moving with a group velocity v = d/c ≤ 1. Apart from the y-dependence,

the angle φ in (2.9) also depends on t linearly. This is interpreted as a string rotating in

the azimuthal φ-direction and gives rise to a large angular momentum J = ∂S/∂φ̇. The

explicit form of the HM solution reads [1]

cos θ =
1

c

1

cosh y
, tan g =

1

d
tanh y (2.10)

where the constants c and d are given by

c =
1

cos θ0
, d = tan θ0 , c2 − d2 = 1 (2.11)
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and cos θ0 is the maximal value of cos θ in (2.10). This solution is characterized by two

integrals of motion, the energy E, and the φ-angular momentum J. Both E and J are

infinite quantities when evaluated on the solution, but the combination E − J is finite,

E − J =

√
λ

π
cos θ0 (2.12)

This classical string solution corresponds to an elementary magnon in the integrable

spin chain description of the N = 4 gauge theory. Let us choose the azimuthal angle on

the S2 sphere (2.8) to be φ1 for concreteness. This is achieved by setting α = 0 on the S5

so that

µ1 = sin θ , µ2 = cos θ , µ3 = 0 (2.13)

In addition we decouple φ2 and φ3 by setting them to zero. The resulting metric on

S2 is given by (2.8) with φ = φ1. In the co-moving frame (i.e. in terms of the (t, y)

coordinates) the string solution is represented by a time-independent θ(y) and a time-

dependent φ1 = t + g1(y). This corresponds to a string rotating in the azimuthal φ1

direction. In terms of the µi coordinates (2.13) the rotation is around µ1

µ1 eiφ1(t) = sin θ eiφ1(t) , µ2 = cos θ , µ3 = 0 , θ = const (2.14)

Comparing this with the gauge theory dictionary (2.4)-(2.6), we see that in this case the

Hofman-Maldacena string solution corresponds to a magnon (1.1) with Z = Φ1 and the

impurity I = Φ2. The exact dispersion relation for this magnon is given by

E − J1 =

√

1 +
λ

π2
sin2 p

2
(2.15)

which in the large λ limit coincides with the classical string result (2.12) provided that one

makes an identification [1]

sin
p

2
= cos θ0 (2.16)

γ̂ 6= 0: String solution parameterized by two angles. The main motivation behind

this paper is to find what happens to the Hofman-Maldacena solution when one switches

on the deformation parameter γ̂. The most obvious thing seems to be to construct the

appropriate solution in terms of θ(y) and φ1(t, y) on the β-deformed background. This

will be done in the next sub-section where we will see that the minimal such solution will

necessarily involve the third angle, e.g. φ2 and will be forced to propagate on S̃3 rather

than S̃2.

Before turning to this case we want to comment on a more trivial case of the solution

propagating on a 2-sphere which does not involve φi’s, but instead is parameterized by the

angles θ and α. For simplicity we set all φi angles to zero. At this point the deformed S̃5

sphere collapses to the ordinary S2 sphere with the metric

ds2 = dθ2 + sin2 θ dα2 (2.17)

There is no deformation left and the resulting classical solution is precisely the undeformed

Hofman-Maldacena solution with φ replaced by α. The rotation is in the (µ1, µ3) plane with

– 6 –



J
H
E
P
1
1
(
2
0
0
6
)
0
9
3

µ2 being constant, cf. (2.7). This solution describes the magnon of eq. (1.1). However, the

Z-fields are not given by any single superfield Φi. The rotating field is actually ϕ1 + iϕ5.

Hence the θ − α solution corresponds to the magnon (1.1) with Z = ϕ1 + iϕ5 and the

impurity I = Φ2. Of course, in the undeformed N = 4 gauge theory, this magnon is

equivalent to the magnon of the Hofman-Maldacena solution due to the SO(6)R symmetry.

The same is true in the β-deformed theory at least at small values of β ¿ 1 relevant for

the LM supergravity regime. In this regime the dispersion relation of the magnon is given

by (1.2).

γ̂ 6= 0: String solution parameterized by three angles. Now we want to study a

non-trivial deformation of the Hofman-Maldacena solution in the θ− φ sector. It will turn

out that this solution is required to live on the S̃3 sphere. Hence we need to consider a

classical string moving on the IR × S̃3. To achieve this we set α = 0 and use (2.13). The

deformed 3-sphere S̃3 is parameterized by the three angles θ, φ1 and φ2. The non-vanishing

components of the metric and the two-form field BNS are given by

ds2 = dθ2 + G sin2 θ dφ2
1 + G cos2 θ dφ2

2 , (2.18)

BNS
φ1φ2

= γ̂ G sin2 θ cos2 θ (2.19)

Classical equations follow from the Polyakov action

S = −
√

λ

2

∫

dτdx

2π

√−γ [γαβ∂αXµ∂βXνGµν − εαβ∂αXµ∂βXνBµν ] (2.20)

After fixing the gauge through γαβ = ηαβ = (−1, 1) and plugging in (2.20) the expressions

for Gµν and BNS
µν we have

S = −
√

λ

2

∫

dτdx

2π
[−(∂τ t)

2 − (∂τθ)2 + (∂xθ)2 + G cos2 θ((∂xφ2)
2 − (∂τφ2)

2)

+G sin2 θ((∂xφ1)
2 − (∂τφ1)

2) − 2γ̂G sin2 θ cos2 θ(∂τφ2∂xφ1 − ∂xφ2∂τφ1)]. (2.21)

Equations of motion for t, θ, φ1 and φ2 follow from this action.3 We choose the conformal

gauge t = τ and look for the classical solution of the form

θ(x, t) = θ(y) , φ1(x, t) = t + g1(y) , φ2(x, t) = g2(y) (2.22)

Here y = cx − dt is the same as in the undeformed case. The constants c and d are real-

valued and positive. The main difference of the ansatz (2.22) with that in the undeformed

case (2.9) is the appearance of the third angle φ2 = g2(y). It follows from the equations

of motion (and in particular from the contributions of the BNS form) that φ2 can never

be decoupled on the deformed sphere with γ̂2 > 0. This implies that in the (θ, φi) sector

any β-deformation of the S2-solution of Hofman and Maldacena will necessarily live on the

3-sphere S̃3. Generalizations to motion on higher spheres is straightforward.

3We have also solved classical equations which follow from the Nambu-Goto action. In this way we found

the same solutions and the same expression for the energy as the ones written down below. This agreement

also guarantees that our solutions satisfy the Virasoro constraints.
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The classical equations for our ansatz take the form

(d2−c2)∂2
yθ = 1

2∂θ(G sin2 θ)
(

1−2d∂yg1+(d2−c2)(∂yg1)
2
)

+ 1
2∂θ(G cos2 θ)(d2 − c2)(∂yg2)

2

+∂θ(γ̂G sin2 θ cos2 θ)c∂yg2 (2.23)

(d2 − c2) ∂y(G sin2 θ ∂yg1) − d ∂y(G sin2 θ) = 0 (2.24)

(d2 − c2) ∂y(G cos2 θ ∂yg2) − c ∂y(γ̂G sin2 θ cos2 θ) = 0 (2.25)

These equations can be simplified as follows

∂y g1 = −d

(

1 − 1

G sin2 θ

)

(2.26)

∂y g2 = −γ̂ c sin2 θ (2.27)

(∂y θ)2 = c2 cos2 θ + d2

(

1 − 1

G sin2 θ

)

(2.28)

Here we have imposed c2 − d2 = 1 which guarantees that the group velocity v ≡ d/c ≤ 1.

We also have applied boundary conditions that as y → ±∞ the angle θ → π/2. At the

same time the derivatives ∂y θ and ∂y g1 vanish in this limit. It is easy to see that the

derivative of the third angle, φ2, cannot be vanishing at infinity, ∂y g2 → −γ̂c 6= 0.

Substituting the expression (2.3) for G into the equation for θ we get

∂y θ = cos θ

√

c2 − d2
1 + γ̂2 sin2 θ

sin2 θ
(2.29)

This equation can be integrated and admits an analytic solution:

cos θ =

√

1 − γ̂2d2

c2 − γ̂2d2

1

cosh (
√

1 − γ̂2d2 y)
≡ cos θ0

1

cosh (
√

1 − γ̂2d2 y)
(2.30)

This expression is reminiscent of the undeformed solution in (2.10). Solutions of the two

remaining equations (2.26), (2.27) can be found straightforwardly from the expression for

cos θ in (2.30).

We now proceed to evaluate the conserved charges corresponding to the t, φ1 and φ2

isometries of the background. These are the energy E and the two angular momenta J1

and J2. They are given by

E =

∫ ∞

−∞

dx δS/δṫ =

√
λ

2π

∫ ∞

−∞

dx , (2.31)

J1 =

∫ ∞

−∞

dx δS/δφ̇1 =

√
λ

2π

∫ ∞

−∞

dx G sin2 θ(∂tφ1 − γ̂ cos2 θ∂xφ2) , (2.32)

J2 =

∫ ∞

−∞

dx δS/δφ̇2 =

√
λ

2π

∫ ∞

−∞

dx G cos2 θ(∂tφ2 + γ̂ sin2 θ∂xφ1) (2.33)

– 8 –
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With these expressions we can now derive the expression for the quantity E − J1, on our

solution. We substitute into (2.32) the solutions (2.22)-(2.27), (2.30) and after a little

algebra we find a simple result

E − J1 =

√
λ

2π
c2

∫ ∞

−∞

dx cos2 θ =

√
λ

2π
c

∫ ∞

−∞

dy cos2 θ (2.34)

This expression can be rewritten entirely in terms of the angle θ,

E − J1 =

√
λ

π
c

∫ π/2

θ0

dθ cos2 θ (∂yθ)−1 (2.35)

Using (2.29) the integral in (2.35) can be performed immediately with the result being

E − J1 =

√
λ

π

√

1 + γ̂2 sin2 θ0 cos θ0 , 0 ≤ θ0 ≤ π/2 (2.36)

The expression for the second angular momentum J2 can be also simplified in a similar

fashion giving us the simple result

J2 =

√
λ

π
γ̂ d

∫ ∞

−∞

dy cos2 θ = γ̂
d

c
(E − J1) . (2.37)

For ease of comparing different formulae, it will be useful to express all the answers in

terms of θ0. It follows from (2.30) that sin2 θ0 = d2/(c2 − γ̂2d2). This gives the relation for

d/c = sin θ0/
√

1 + γ̂2 sin2 θ0. This implies that J2 on our classical string solution takes the

form

J2 =

√
λ

π
γ̂ sin θ0 cos θ0. (2.38)

This is a remarkable and somewhat surprising result: our embedding of the Hofman-

Maldacena giant magnon solution to the β-deformed theory has resulted in the appearance

of the second angular momentum J2. We recall that J2 was identically zero on the original

Hofman-Maldacena solution in the undeformed theory.4 In the deformed case γ̂ = fixed 6= 0

and thus our solution necessarily acquires the second angular momentum J2. The value of

J2 in (2.38) is proportional to the parameter
√

λγ̂ which can take any value, large or small.

Furthermore, J2 in (2.38) depends on the value of θ0 which labels different solutions within

our ansatz. We will clarify the nature of J2 and the interpretation of the classical string

solution as magnon excitations on the spin chain in the next section.

Since our solution has two angular momenta, J1 and J2 we can ask if its dispersion

relation is reminiscent of (1.4). Remarkably, the dispersion relation is precisely of the

square-root form required in (1.4). Using eqs. (2.36) and (2.38), we find that on our

solution

(E − J1)
2 − J2

2 =
λ

π2
cos2 θ0 (2.39)

4This of course is not inconsistent with the fact that the Hofman-Maldacena solution corresponds to an

elementary magnon of magnon-charge J2 = 1. The vanishing J2 of the classical string only implies that J2

is zero at order-
√

λ, where λ À 1 to justify the semiclassical analysis.
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Since we want to interpret our solution as a magnon, we will define the magnon momentum

p in terms of the parameter θ0 similarly to the undeformed case (2.16) via

sin
(p

2
− πβ

)

= cos θ0 (2.40)

Then the dispersion relation is

E − J1 =

√

J2
2 +

λ

π2
sin2

(p

2
− πβ

)

(2.41)

where p is the momentum carried by the magnon. We note that the dispersion relation

above depends periodically on p as p → p + 2π, and on β as β → β + 1 as required. In

the regime λ À 1, E ∼ J1 → ∞ and J2 arbitrary5 this classical string result is completely

reliable. Essentially, one expects that the only effect of quantum corrections in this regime

is the fact that the angular momenta are quantized, see also [16].

3. Interpretation in terms of magnons

The string solution constructed in section 2 is a generalisation of the Hofman-Maldacena

solution to the β-deformed background. We can think of it as the β- or γ̂-deformation

of the Hofman-Maldacena classical string. In the limit where the deformation parameter

goes to zero, γ̂ → 0, our solution collapses to the original Hofman-Maldacena solution, as

expected, and can be seen from eqs. (2.36),(2.38). The Hofman-Maldacena solution of the

undeformed theory carried a single spin, J1, and was identified in [1] with an elementary

magnon excitation of the spin chain. We have already noted that the deformed solution, in

addition to J1, carries also a non-zero value of the second spin, J2 given by (2.38). As such,

this deformed solution should describe a magnon excitation of magnon-charge J2 ∝
√

λγ̂ in

the β-deformed theory. What happens is that when we start with the elementary magnon

described by the Hofman-Maldacena solution in the undeformed theory and then turn on

the deformation γ̂ of the background, this induces the charge J2 and the resulting string

configuration corresponds to J2-boundstate of elementary magnons. If this is the case,

then we need to explain how to construct the elementary magnon in terms of a classical

string in the deformed theory. This will become clear momentarily.

Note that the solution in the deformed theory we have studied so far, corresponds to

a magnon of charge J2 with a fixed momentum p, such that J2 = (
√

λγ̂/2π) sin(p − 2πβ).

This is simply a reflection of the fact that our solution describes a minimal deformation of

the Hofman-Maldacena solution, both solutions depend on a single free parameter, θ0 (or

c, d with c2−d2 = 1, or p). In order to describe magnons with two independent parameters,

J2 and p, one needs to extend the ansatz (2.22) to include dependence on one additional

parameter. This is easily achieved by looking for a string solution with two spins in the

form [15, 16]

θ(x, t) = θ(y) , φ1(x, t) = t + g1(y) , φ2(x, t) = νt + g2(y) (3.1)

5Dictated by (2.38).
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Here y = cx− dt is the same as before with c2 − d2 = 1. The new parameter is ν appearing

in the equation for φ2. If one sets ν = 0, eqs. (3.1) we are back to the original ansatz (2.22)

of section 2.

This ansatz was used earlier in [15] to obtain string solutions with two spins J1, J2

in the undeformed theory. In the paper [33] which has appeared after the first version of

the present paper, the ansatz (3.1) was used to study corresponding solutions in the β-

deformed theory. The integrals of motion of the ν-extended string solution in the deformed

theory were calculated in [33]:

J2 =
νc + γ̂d

c
(E − J1) , E − J1 =

√
λ

π

c cos2 θ0
√

1 − (νc + γ̂d)2
(3.2)

where the angular parameter θ0 is defined in terms of c, d and ν parameters of the solution

via

cos2 θ0 =
1 − (νc + γ̂d)2

c2 − (νc + γ̂d)2
(3.3)

These equations generalise expressions in (2.37),(2.36),(2.30) respectively. In particular, it

follows that expressions for J1 and cos2 θ0 can be obtained from the results of section 2

by a shift γ̂d −→ νc + γ̂d. In what follows it will be convenient to denote this universal

combination as

Γ := νc + γ̂d (3.4)

We will now demonstrate that the two free parameters of the ansatz (3.1) can be chosen

in such a way that the resulting giant magnon solution carries a fixed value of the magnon

charge J2 for any value of the magnon momentum p. In other words, one can characterise

the giant magnon by two independent arbitrary constant values of p and J2. In particular,

the value of J2 can be chosen to be one (or more precisely zero in the leading order in
√

λ)

to describe the elementary magnon, or different from one to describe a magnon boundstate.

The magnon momentum p is determined via (2.40) in terms of cos θ0. We now fix the

value of p (or equivalently of cos θ0) and of the spin J2 and solve for the free parameters of

the ansatz in terms of these values. From eqs. (3.2) we determine the constant Γ in terms

of J2 and p (i.e. θ0) as

Γ2 =
J2

2

J2
2 + λ

π2 cos4 θ0

. (3.5)

Then all the parameters of the ansatz: c, d and ν, are determined through Γ via

eqs. (3.3), (3.4) as

c2 = Γ2 +
1 − Γ2

cos2 θ0
, d2 = c2 − 1 , ν =

Γ − γ̂d

c
. (3.6)

Thus we have uniquely fixed the two independent parameters of the classical string in terms

of the magnon charge J2 and momentum p. The dispersion relation still takes the required

form (2.41). For J2 = 1 the solution describes the elementary magnon, and for J2 > 1, a

magnon boundstate6 in the β-deformed theory. When set the deformation parameter to

6In full quantum theory all angular momenta are quantized. Hence when quantum corrections are

included, the classical result for J2 will have to take integer values.
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zero, γ̂ → 0, the first equation in (3.2) gives precisely the value of J2 ∝ ν in the undeformed

theory as expected [15, 33].

To summarise, in this paper we have shown that the Hofman-Maldacena construc-

tion [1] of magnons in terms of classical string solutions can be successfully generalised to

β-deformed theories. This generalisation always results in a magnon solution which carries

a second orbital momentum J2. The solution satisfies the exact square-root-type dispersion

relation (2.41).
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